Privacy Challenges in the Internet of Things (IoT) – a European Perspective

Alicja Gniewek, PhD Student
Interdisciplinary Centre for Security, Reliability and Trust
Weicker Building, Université du Luxembourg
Postal Address 4, rue Alphonse Weicker
L-2721 Luxembourg

Email alicja.gniewek@uni.lu
Telephone (+352) 46 66 44 5834
Internet of Things – new and dangerous?

- 25 billion Internet-connected devices by 2015
- 40% of data will come from sensors by 2020
- Bringing convenience in all areas: car industry, health, home appliances, clothes etc.
- Solving societal problems: managing energy consumption, traffic, enable advancements in health care…
Internet of Things – new and dangerous?

There Is No Privacy On The Internet Of Things

Over the last month there has been an unfathomable amount of excitement around the Internet of Things. Kitchens ordering food, washing machines turning on when energy demand on the grid is high... Kitchens ordering food, washing machines turning on when energy demand on the grid is high...

'Internet of Things' holds promise, but sparks privacy concerns
Problematic areas – legal perspective

- Huge amounts of data
- Sensitive data
- Detailed profiles
- Constant ‘surveillance’
- Invisible ‘tracking’

- Control over data
- Consent
- Purpose of data processing
- Re-use of data
- Anonymity and security
Question of control in the IoT

- Loss of control as a result of diminished transparency of data processing
- Massive amounts of different data \rightarrow how to handle them?
- Automatic communications between objects \rightarrow no place for traditional control
- Outcome: Loss of control over data and their subsequent use
Consent and IoT?

- No place for the *informed consent* in the situation of ’no-control’
- Problem of „invisible” objects: e.g. wearable computing (signposting?)
- No opt-out (full or partial) for certain services
- Problem of obtaining consent (place and form for implementing consent mechanisms)
Secondary use of data

- Secondary use of data (and inconsistency with primary purpose)
- Getting new kinds of data via aggregation and advanced analysis (process unknown to the data subject?)
Profiling and behavioural pattern

- Aggregating trivial and anonymous data (+profiles)
- Detection of additional data via analytics
- Other: Influence on the people’s behaviour
Anonymity?

- Numerous data available as „fingerprints” of individuals that may be later combined with other data
- Increasing difficulty of being anonymous
- Increased security problems – breaches, leakages, hacking etc.
Current state: Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data

+ Member States’ implementations

Discussed: Proposal for a Regulation of the European Parliament and of the Council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation)

Selected principles of data processing:
- Data shall be collected and processed fairly and lawfully
- Data can only be collected for specified, explicit and legitimate purposes (purpose limitation)
- Collected data shall be strictly necessary for the determined purpose (data minimisation) and kept no longer than it is necessary
The **Article 29 Data Protection Working Party** was set up under the Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the **protection of individuals** with regard to the processing of personal data and on the **free movement** of such data. It has **advisory** status and acts **independently**.

Opinion 8/2014 on the Recent Developments on the Internet of Things, adopted on 16 September 2014
Recommendations for all the stakeholders

- Delete as soon as possible all raw data and use only data required for your processing
- Apply principles of Privacy by Design and Privacy by Default
- Allow users to fully exercise their rights and be „in control”
- Inform about the data processing (e.g. policies) in a user-friendly way
- Design devices in a way that will enable informing users about data processing
Recommendations for the manufacturer

- Inform about the types of data collected and received as well as about the processing and combining
- Inform about the change of user’s consent
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Disable wireless interfaces or use random identifiers (no fingerprinting)
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Develop tools to inform users about vulnerabilities (info of no further updates)
- Enable personal privacy proxies
- Enable differentiation between different users of one device
- Work towards standards
- Allow user to make choice (granularity)
- Enable user’s access to data (format, user-friendly interface)
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Enable personal privacy proxies
- Work towards standards
- Allow user to make choice (granularity)
- Enable user’s access to data (format, user-friendly interface)
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Enable personal privacy proxies
- Work towards standards
- Allow user to make choice (granularity)
- Enable user’s access to data (format, user-friendly interface)
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Enable personal privacy proxies
- Work towards standards
- Allow user to make choice (granularity)
- Enable user’s access to data (format, user-friendly interface)
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Enable personal privacy proxies
- Work towards standards
- Allow user to make choice (granularity)
- Enable user’s access to data (format, user-friendly interface)
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Enable personal privacy proxies
- Work towards standards
- Allow user to make choice (granularity)
- Enable user’s access to data (format, user-friendly interface)
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Enable personal privacy proxies
- Work towards standards
- Allow user to make choice (granularity)
- Enable user’s access to data (format, user-friendly interface)
- Security by design (+ key cryptography)
- Changing raw data to aggregated data already on the device
- Allow to locally read, edit and modify data before transferring them to controller (+ data portability)
- Enable personal privacy proxies
- Work towards standards
Recommendations for the application developers

- Frequent users’ notices and warnings about data collection
- Enable full exercise of right of access, modification and deletion of personal data
- Enable data-subjects to export raw and aggregated data (standard and usable format)
- Pay attention to the types and sensitivity of data (also inferred)
- Apply the data minimisation principle (provider should not have an access to the raw data if it is possible)
- Follow Privacy by Design principle
IoT device owners/3rd parties

- Consent must be informed and freely given
- Data subject should be able to administrate the device
- No economic or other penalties for the opt-out (partial or full)
- Non-users should be informed about the IoT devices and types of data collected
Conclusions – EU approach

EU approach underlines:
- Privacy by Design principles need to be integrated
- Application of ‘purpose limitation’ and ‘data minimisation’ principle
- User should be informed fully about the processing (data/processing itself)
- User should be ‘in control’ (administration, opt-out etc.)

General conclusion: Article 29 WP applies rather rigidly the EU law to the new situation of data processing. They rely on the assumption that the privacy principles will be integrated in the design of the IT solutions.
Conclusions – US approach

FTC underlines best practices (see: FTC 2012 Privacy Report):
- Privacy by Design
- Deidentification + public commitment not to try to re-identify data
- Effective transparency of developers

Future Privacy Forum (An US think tank) suggests:
- Traditional application of FIPPs is not practical
- Need for flexibility with regards to ‘notice and choice’ (no notice in case of the known context of processing, processing on own device, notice available after start of the processing)
- Need for data anonymization
- Transparency, automated accountability mechanisms, codes of conduct, reasonable access to data
Thank you for your attention.

Alicja Gniewek
alicja.gniewek@uni.lu